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Abstract—This paper considers technical systems described by nonlinear dynamic models. The
fault tolerance property of such systems is ensured by introducing feedback with full or partial
fault decoupling. The solution is based on separating a subsystem insensitive or minimally
sensitive to faults and its subsequent analysis. For this purpose, a logical-dynamic approach is
used, which operates only linear algebra methods. An illustrative practical example is provided.
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1. INTRODUCTION

Modern technical systems (robots, control systems) are subjected to various faults in their
elements. Redundancy is one way to eliminate the effect of such faults [1]; however, it requires
excessive resources and is not always implementable in practice. The use of fault diagnosis methods
is a more promising approach to improving the reliability, safety, and efficiency of such systems. In
real time, these methods have to detect emerging faults and determine the values of the changed
system parameters and errors in the readings of their sensors. After that, all identified changes
with undesirable consequences are promptly parried.

Various fault diagnosis methods were thoroughly described in [2], including the basic terminology
in this area. According to [2], a fault is understood as an unacceptable deviation of at least one of
the characteristic properties or variables of a system from its standard (nominal) behavior. In this
paper, such a deviation is represented by an unknown bounded time-varying function d(t) added
to certain components of the system state vector depending on the fault location.

As is known [3], adaptive systems designed to parry the consequences of faults and changes in
the parameters of control objects can be divided into two large groups: systems with self-adjusting
structure (self-organizing systems) and systems with self-tuning parameters (self-tuning systems).
In the former case, certain structural changes are made to the system being diagnosed, i.e., it is
reconfigured to remove failed elements and use redundant ones. In the latter case, depending on
the changes in the parameters of the control object, emerging faults, or external influences, only
certain parameters of the used controller are tuned according to some algorithm embedded in the
self-tuning device. The system with faults and changed parameters should continue functioning,
preserving its most important characteristics within the admissible limits.
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Each of the above approaches has peculiarities, which somewhat restrict the scope of their
practical application. In particular, the possibility of involving redundant elements is limited by
the maximal design-achievable and operational (mass and size, energy, etc.) characteristics of
specific robots.

Examples of implementing such an approach were described in [4, 5]. The cited authors solved
the problem of fault-tolerant control of underwater robots in case of failure of one thruster (the first
work mentioned) and in case of faulty electric actuators installed in the manipulator joints (the
second one). In both cases, it was proposed to disconnect the faulty actuator and then distribute
its control actions between the others with additional connection of the redundant ones. The
disadvantage of such systems is the need for extra actuators in robots, which complicates the design
and appreciably increases the cost of robots. In addition, the feasibility of using redundancy must
be justified by additional calculations of reliability indicators. As a rule, redundancy elements have
the same reliability as the replaced ones; as a result, the possibility of increasing the reliability of
robots through redundancy is significantly limited. Fault adaptation methods based on self-tuning
allow avoiding additional hardware costs, but their use admits degradation of some (usually minor)
performance indicators of robots, possibly affecting the tactical and technical characteristics of
robots and, in some cases, even requiring correction of the mission.

Fault-tolerant self-tuning systems with a reference model are known; their design principles
were presented in [6, 7]. The main peculiarity of this class of systems is the availability of an
explicit technical device (model) with given dynamic properties. In this case, the dynamics of the
entire system are reduced to the desired dynamics of the model. Such adaptation systems to faults
and variable parameters have found application in both ground and underwater robotics [8–10],
providing high-quality control of robots with rather simple means without identifying the parameter
deviations caused by faults or other external factors during their operation. As the main drawback
of such systems, we note the presence of high-frequency oscillations in the self-tuning loop, which
in some cases may significantly reduce the quality of adaptation to emerging faults and variable
parameters. In addition, during the operation of such systems, the deviations of parameters from
their nominal values are not determined; therefore, in the case of critical faults (e.g., short-circuit
in some winding turns of the anchor chain of electric motors, the appearance of significant external
torques on motor shafts), the robots will not be promptly stopped, and their further breakdown
will not be prevented. The systems under consideration also neglect errors in the readings of robot
sensors.

Optimal and robust principles of adaptive systems design are often used in engineering to
compensate for the consequences of emerging faults and parameter deviations from nominal val-
ues [11–13]. The advantage of such systems is a sufficiently high level of robustness to the uncertain
parameters of robots, but they are built based on a linearized model, which restricts their applica-
tion to fault-tolerant control of the spatial motion of complex dynamic objects.

Currently, variable-structure systems operating in sliding mode are a common type of robust
control systems. Examples of their use for fault-tolerant robot control were described in [14–17].
Control systems with adaptation to emerging faults and parameter deviations based on variable-
structure systems have several considerable benefits compared to other types of fault-tolerant sys-
tems. Despite this fact, they also suffer from the disadvantage that, in order to ensure the perfor-
mance of a variable-structure system within the entire range of changes in robot parameters, such
systems are designed in the worst case (when these parameters correspond to the lowest system
performance). As a result, even in the absence of faults, additional control signals are generated,
which will increase their amplitude and energy consumption and, consequently, reduce the au-
tonomous operation time. That is, fault-tolerant control systems of this class have a deliberately
underestimated performance.
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Fig. 1. The implementation scheme of the proposed solution.

The approaches and methods discussed above are illustrated mainly by examples of robots, but
their peculiarities also apply to many modern technical systems.

A certain alternative to the considered methods is approaches based on full or partial fault
decoupling: a fault is detected, but the values of the changed system parameters are not determined,
and the control action on the system is corrected by using a specially built compensator and a new
control. As a result, the system will execute its main operations with the previous or admissibly
reduced quality. By assumption, the execution of these operations depends not on all components
of the system state vector but only on some part of them, defined by a known function, and these
components have to be fully or partially decoupled from possible system faults.

Figure 1 shows the implementation scheme of the proposed solution, where u(t) and y(t) are the
control vector and output of the system, respectively, z(t) is the state vector of the compensator,
v(t) is the new control, and g∗ is a function defined below. The control u(t) was constructed to
execute certain operations by the system, and the new control v(t) must be constructed to execute
the same operations by the system with the compensator, with the same or admissibly reduced
quality.

This approach has certain limitations: figuratively speaking, it can be implemented if there exists
a control signal between the fault location and the system variables that need to be decoupled from
this fault; the control signal is used for fault decoupling.

For systems described by nonlinear difference equations, such an approach was implemented
in [18, 19] based on full decoupling using a rather complex mathematical apparatus of function
algebra. In distinction, this paper considers systems given by nonlinear differential equations
subject to faults. For such a system, it is required to find a description of the compensator and a
function g∗ to decouple from faults, fully or partially, given components of the system state vector.

The problem of determining the new control v(t) is not considered below since this control
depends on the tasks solved by the system and can be determined when specifying these tasks.
After the compensator is built, the new control can be determined by known methods [20]; the
compensator depends on given components of the system state vector and the fault location and
is independent of the tasks solved by the system.

Note that for affine systems, such a problem was solved in [21] based on full decoupling by rather
complicated methods of differential geometry. The novelty of this paper is that the systems under
consideration may contain unsmooth nonlinearities; the problem is solved using the logical-dynamic
approach [22], which allows analyzing nonlinear systems by linear algebra methods under definite
restrictions on the class of solutions. Moreover, partial fault decoupling is studied in addition to
full decoupling.

The remainder of this paper is organized as follows. Section 2 presents the main models: descrip-
tions of the given nonlinear system and its submodel used to build the compensator. In Section 3,
a fault-insensitive submodel is constructed; in Section 4, a submodel minimally sensitive to faults.
Section 5 is devoted to the compensator design. An illustrative example is provided in Section 6,
and Section 7 concludes the paper.
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2. MAIN MODELS

Consider systems described by the nonlinear model

ẋ(t) = Fx(t) +Gu(t) + CΨ(x(t), u(t)) +Dd(t),

y(t) = Hx(t),
(2.1)

where x ∈ R
n, u ∈ R

m, and y ∈ R
l are the state vector, control input, and output, respectively;

F and G are known constant matrices that describe linear dynamics; H, C, and D are known
constant matrices; d(t) is a scalar function that describes faults (if there are no faults, d(t) = 0; when
faults occur, d(t) becomes an unknown bounded time-varying function); Ψ(x, u) is the nonlinear
part represented as

Ψ(x, u) =

⎛⎝ ϕ1(A1x, u)
. . .

ϕq(Aqx, u)

⎞⎠ ,

where A1, . . . , Aq are known constant row matrices, and ϕ1, . . . , ϕq are arbitrary nonlinear func-
tions.

Remark 1. If the system may have several faults, then (generally speaking) it is necessary to
build a bank of several compensators for fault decoupling. The method under consideration cannot
be applied to decouple from sensor faults; if the value of such a fault is unknown, it is necessary
to exclude the readings of the corresponding sensor from the control system or use a virtual sensor
instead [23].

Note that the nonlinear system (2.1) can be obtained from the general nonlinear system

ẋ(t) = f(x(t), u(t), d(t)),

y(t) = h(x(t))
(2.2)

by several transformations [22].

By assumption, faults in the system change the value of some system parameter. As a result,
d(t) represents the product of this change by some component of the vector x(t) or u(t) and is an
unknown bounded time-varying function; the matrix D indicates the fault location. The fault can
be detected and isolated by known fault diagnosis methods (e.g., see [2]), but the function d(t) still
remains unknown.

By another assumption, the function of the components of the system state vector x(t) for full
or partial fault decoupling is given by a known matrix H0 defining the variable y0(t) = H0x(t).
Such decoupling is ensured by introducing dynamic feedback into the system, being implemented
through a compensator generally described by the nonlinear equations

ż(t) = ϕ(z(t), v(t), y(t)),

u(t) = g∗(z(t), v(t), y(t)),
(2.3)

where z(t) ∈ R
k denotes the state vector of a compensator of dimension k < n, v(t) is the new

control, and the functions ϕ and g∗ have to be determined. Note that the variable y0(t) must be
expressed through the state vector z(t).

For the discrete-time analog of system (2.2), the problem of insensitivity to (or full decoupling
from) disturbances and faults via feedback was solved in a general form in [18, 19] based on a rather
complex mathematical apparatus of function algebra. In this paper, we solve the problem of full or
partial decoupling with insensitivity (or minimal sensitivity) to faults for system (2.1) within the
logical-dynamic approach [22], which operates only linear algebra methods.
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The problem solution involves a submodel of system (2.1) insensitive or minimally sensitive to
faults and a compensator built on its basis. Note that interval observers in [24] were designed by
building a minimal-dimension submodel. In contrast, the compensator supplying the feedback is
built based on a submodel of a maximal dimension k < n, which provides the best conditions for
satisfying the equality y0(t) = H0x(t). This submodel is described by the equation

ẋ∗(t) = F∗x∗(t) +G∗u(t) + J∗y(t) + C∗Ψ∗(x∗(t), y(t), u(t)), (2.4)

where x∗(t)∈R
k stands for the state vector of the submodel of dimension k < n; F∗, G∗, J∗, and

C∗ are the matrices to be determined;

C∗Ψ∗(x∗, y, u) =

⎛⎜⎝ ϕi1(A∗1,i1x∗ +A∗2,i1y, u)
. . .

ϕik(A∗1,ikx∗ +A∗2,iky, u)

⎞⎟⎠ , (2.5)

where A∗1,i1 , A∗2,i1 , . . . , A∗1,ik , and A∗2,ik are the matrices to be determined; C∗Ψ∗ denotes the func-
tion C∗Ψ in which the vector x is replaced by x∗ and y through the relation Aix = A∗1,ix∗ +A∗2,iy,
where i = i1, . . . , ik are the numbers of the nonzero columns of the matrix C∗.

3. BUILDING THE FAULT-INSENSITIVE SUBMODEL

We clarify that submodel (2.4) for building the compensator is a virtual object. In fact, it
represents part of system (2.1) whose dynamics are determined by the state vector x∗ related to
the vector x by x∗(t) = Φx(t), where Φ is some constant matrix. Generally speaking, these vectors
can be related by a nonlinear function, and the assumption of its linearity restricts the class of
solutions; it is characteristic of the logical-dynamic approach used here.

According to [22, 24], this matrix satisfies the equations

ΦF = F∗Φ+ J∗H, ΦG = G∗, ΦC = C∗, ΦD = D∗

Ai = (A∗1,i A∗2,i)

(
Φ
H

)
, i = i1, . . . , ik.

(3.1)

The last equality in (3.1) is valid if

rank

(
Φ
H

)
= rank

⎛⎜⎝ Φ
H
A′

⎞⎟⎠ , (3.2)

where the matrix A′ consists of the rows Ai1 , . . . , Aik .

To solve the problem, we introduce the additional condition y0(t) = H∗x∗(t) for some matrix H∗,
i.e., the variable y0(t) = H0x(t) must be expressed through the compensator state vector. In view
of x∗(t) = Φx(t), it follows that

rank
(
Φ

)
= rank

(
Φ
H0

)
. (3.3)

If this condition fails, the problem is unsolvable. Under this condition, the matrix H∗ is found from
the equation H∗Φ = H0.

To ensure the fault-insensitivity condition ΦD = D∗ = 0, we introduce a matrix D0 of maximal
rank such that D0D = 0. Then ΦD = 0 implies Φ = ND0 for some matrix N. Let us replace the
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matrix Φ in ΦF = F∗Φ+ J∗H with ND0, i.e., ND0F = F∗ND0 + J∗H. After the separation of the
unknown and known matrices, the resulting expression can be written as

( N −F∗N −J∗ )

⎛⎜⎝ D0F
D0

H

⎞⎟⎠ = 0. (3.4)

Solving equation (3.4) yields the matrices F∗, J∗, and N, which are, in turn, allow finding the
matrix Φ. Let the compound matrix ( X Y Z ) contain all linearly independent solutions of
equation (3.4), i.e.,

( X Y Z )

⎛⎜⎝ D0F
D0

H

⎞⎟⎠ = 0. (3.5)

Comparing equations (3.4) and (3.5), we obtain the equality Y = −F∗X. Therefore, the matrices
Y and X cannot be arbitrary: the rows of Y must be linearly expressed through the rows of X.
To consider this fact, the rows of Y that are linearly independent of the rows of X must be removed.
This procedure is implemented using Algorithm 1, where Yj denotes the jth row of the matrix Y,
j = 1, . . . , p, and p is the number of rows in the matrix Y.

Algorithm 1.

(1) Set j = 1.

(2) If rank(X) = rank

(
X
Yj

)
, pass to Step 4; otherwise, to Step 3.

(3) Remove the jth row from the matrix ( X Y Z ), set p := p− 1, and return to Step 1.
(4) If j < p, set j := j + 1 and return to Step 2; otherwise, complete the procedure.

Let ( X0 Y0 Z0 ) denote the matrix outputted by the algorithm. For this matrix, the rows
of the matrix Y0 are linearly expressed through the rows of the matrix X0. Letting Φ := X0D0

and C∗ := ΦC, we construct the matrix A′; if the matrix Φ satisfies condition (3.2), a nonlinear
fault-insensitive compensator can be built. Otherwise, full fault decoupling is unreachable, and
robust methods should be used. If condition (3.3) fails for this matrix, the problem is unsolvable.

Letting J∗ = −Z0 and G∗ = ΦG, we find the matrix F∗ from the algebraic equation Y0 = −F∗X0.
It surely has a solution because, according to Algorithm 1, Y0 is linearly expressed through the
rows of the matrix X0. Thus, the matrices describing the linear part of the submodel have been
obtained. To construct the nonlinear part, we take C∗ = ΦC and determine the matrices A∗1,i
and A∗2,i, i = i1, . . . , ik, from equation (3.1). This gives the nonlinear part (2.5) and, consequently,
the entire submodel (2.4).

4. BUILDING THE ROBUST SUBMODEL

If ( X0 Y0 Z0 ) = 0 or the matrix Φ does not satisfy condition (3.2), the fault-insensitive
compensator cannot be built. In this case, it is necessary to address robust methods to minimize
the fault contribution to model (2.4). For this purpose, we write the relation ΦF = F∗Φ+ J∗H
in a form similar to (3.3), removing the fault-insensitivity constraint ΦD = D∗ = 0 and separating
the unknown matrices from the known ones:

( Φ −F∗Φ −J∗ )

⎛⎜⎝ F
E
H

⎞⎟⎠ = 0, (4.1)
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where E is an identity matrix of appropriate dimensions. Now equation (4.1) can have solutions
admitting the model’s sensitivity to faults.

As above, we consider the compound matrix ( X Y Z ) containing all linearly independent
solutions of equation (4.1), i.e.,

( X Y Z )

⎛⎜⎝ F
E
H

⎞⎟⎠ = 0.

Applying Algorithm 1 to the matrix ( X Y Z ), we obtain the matrix ( X∗ Y∗ Z∗ ) in which
Y∗ = −MX∗ with some matrix M. If this equation has several solutions, they will correspond to
several matrices Φ : Φ(1), . . . , Φ(s). By determining, for each of them, the norm ‖Φ(i)D‖ corre-
sponding to the fault contribution to the compensator, we can choose the variant with the smallest
norm value corresponding to the minimal fault contribution to the submodel.

A better result can be obtained by setting the matrix Φ =
∑s

i=1 viΦ
(i) and assigning the weights

v1, . . . , vs based on minimization of the norm ‖ΦD‖. However, this approach is possible only if the
matrix F∗ in the expression ΦF = F∗Φ+ J∗H remains the same for different Φ. We implement this
approach by choosing F∗ in the canonical form

F∗ =

⎛⎜⎜⎜⎝
0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . .
0 0 0 . . . 0

⎞⎟⎟⎟⎠ , (4.2)

which will additionally simplify the design procedure. Due to the canonical form (4.2), equa-
tions (3.1) become [22]

ΦiF = Φi+1 + J∗iH, i = 1, . . . , k − 1, ΦkF = J∗kH, (4.3)

where Φi and J∗i are the ith rows of the matrices Φ and J∗, respectively, i = 1, . . . , k. According
to [22], these equations can be convolved into one:

( Φ1 −J∗1 −J∗2 . . . −J∗k )V (k) = 0, (4.4)

where

V (k) =

⎛⎜⎜⎜⎜⎝
HF k

HF k−1

. . .

H

⎞⎟⎟⎟⎟⎠ .

Also, see [22], the minimization problem of the fault contribution to the submodel reduces to min-
imizing the norm ‖ΦD‖ = ‖( Φ1 −J∗1 −J∗2 . . . −J∗k )D(k)‖ subject to condition (4.4), where

D(k) =

⎛⎜⎜⎜⎜⎝
D FD F 2D . . . F k−1D

0 HD HFD . . . HF k−2D
. . . . . . . . . . . . . . .

0 0 0 . . . 0

⎞⎟⎟⎟⎟⎠ .

When solving this problem, we find a maximal dimension k < n for which equation (4.4) has
several (more than one) linearly independent solutions of the form ( Φ1 −J∗1 −J∗2 . . . −J∗k ).
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All these solutions, s totally, are combined into a matrix W so that each row represents some
solution of equation (4.4):

W =

⎛⎜⎜⎝
Φ
(1)
1 −J (1)

∗1 −J (1)
∗2 . . . −J (1)

∗k
. . . . . . . . . . . . . . .

Φ
(s)
1 −J (s)

∗1 −J (s)
∗2 . . . −J (s)

∗k

⎞⎟⎟⎠ .

Due to the considerations above, another solution is an arbitrary linear combination of the rows of
this matrix with the vector of weights v = (v1, . . . , vs). The problem is to determine such a vector v
that minimizes the norm ‖vWD(k)‖.

To solve this problem, we find the singular value decomposition of the matrix product WD(k) :

WD(k) = UDΣDVD,

where UD and VD are orthogonal matrices; depending on the numbers of rows and columns in the
matrix WD(k), the matrix ΣD has the form

ΣD = (diag(σ1, . . . , σw) 0)

or

ΣD =

(
diag(σ1, . . . , σw)

0

)
,

with w = min(s, k) and 0 � σ1 � . . . � σw being the singular values of the matrix WD(k)

[22, 25]. The first transposed column of the matrix UD is chosen as the vector of weights
v = (v1, . . . , vs). By the structure of singular value decomposition and the properties of orthog-
onal matrices, the norm of the matrix vWD(k) equals the minimal singular value σ1 [22], and
( Φ1 −J∗1 −J∗2 . . . −J∗k ) = vW. Then the rows of the matrix Φ are determined from (4.3)
and the matrix A′ is constructed. If this matrix satisfies conditions (3.2) and (3.3), we take
G∗ = ΦG and C∗ = ΦC and find the matrices A∗1,i and A∗2,i, i = i1, . . . , ik, from equation (3.1);
this completes the robust model design. Note that this solution will be optimal for the chosen
dimension k; changing the dimension may yield a better solution of the problem in terms of mini-
mizing the norm ‖(Φ1 − J∗1 − J∗2 . . . − J∗k)D

(k)‖. If condition (3.2) or (3.3) fails, it is necessary
to choose the second or subsequent transposed columns of the matrix UD.

5. BUILDING THE COMPENSATOR

To avoid confusion, we denote the compensator state vector by z(t) := x∗(t), leaving unchanged
the notations for the other elements, particularly the matrix H∗ and the function f∗.

From this point onwards, condition (3.3) is assumed valid, i.e., y0 = H∗z. We denote by Xy the
set of components of the vector z participating in the formation of y0. For building the compensator,
model (2.4) will be written in a compact form:

ż(t) = f∗(z(t), u(t), y(t)). (5.1)

Even if this model does not explicitly contain the unknown function d(t) (when full decoupling
is reached), its state vector is affected by faults due to the presence of the vector y(t) in (5.1).
To build the compensator, this effect must be eliminated by adjusting the control vector u(t) via
feedback with a new control vector v(t). The algorithm below performs the necessary analysis and
generates the feedback if possible. Let f∗j denote the jth component of the function f∗.
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Algorithm 2.

(1) Divide the components of the vector y into two disjoint sets, Yg (good) and Yb (bad), according
to the rules: the variable yi is included in Yg if it does not appear in the function f∗ or can be
expressed through the components of the vector z; otherwise, yi is included in Yb. If Yb = ∅,
full or partial fault decoupling is reached without the compensator since yi in the function f∗
can be replaced by a function of the vector z.

(2) If Yb 	= ∅, for each yi ∈Yb find a variable zj such that f∗j depends on yi and is independent of
u. Let Xb denote the set of all such zj ; it consists of all components of the state vector that
are affected by the fault because f∗j includes the variable yi not compensated by the control.
If Xb = ∅, pass to Step 4.

(3) For each zj ∈Xb find the functions f∗i that depend on zj . If all f∗i depend on u, add zj to Yb and
remove it from Xb. If for some i this condition fails, then the variable zi cannot be decoupled
from faults; if zi ∈Xy, i.e., this variable participates in the formation of the variable y0, then
the problem has no solution. If zi 	∈ Xy, add zi to Xb and continue executing Step 3 until
Xb = ∅ or Xb stops changing. The final set Yb contains the variables that will participate in
the feedback to compensate for the effect of faults.

(4) Find in the function f∗(z, u, y) all terms of the form γi(z, u, y), i = 1, . . . , r, that depend on u
and elements from the set Yb; by assumption, r � m. Form a system of equations for the new
control vector v = (v1 . . . vm)T :

v1 = γ1(z, u, y),
. . .

vr = γr(z, u, y).

Supposing the feasibility of this system with respect to the variables u1, . . . , ur, find its solution:

u1 = γ1(z, u, y, v),
. . .

ur = γr(z, u, y, v);

ur+1 = vr+1, . . . , um = vm.

(5.2)

Replace the vector u in (5.1) with the vector v according to the rules (5.2), which gives the
dynamic part of the compensator (2.3); its static part coincides with (5.2).

6. EXAMPLE

Consider the nonlinear system

ẋ1 = u1/ϑ1 − a1
√
x1 − x2 − d,

ẋ2 = u2/ϑ2 + a1
√
x1 − x2 − a2

√
x2 − x3,

ẋ3 = a2
√
x2 − x3 − a3

√
x3 − ϑ7,

y = x1,

(6.1)

where a1 = ϑ4
√
2ϑ8/ϑ1, a2 = ϑ5

√
2ϑ8/ϑ2, and a3 = ϑ6

√
2ϑ8/ϑ3. These equations describe the

known three-tank system (Fig. 2), where x1, x2, and x3 are the liquid levels in the tanks [26].
The system consists of three tanks with cross sections ϑ1, ϑ2, and ϑ3, respectively; the tanks are
interconnected by pipes with cross sections ϑ4 and ϑ5. The liquid flows in the first and second
tanks, flowing out of the third one through a pipe of a cross section ϑ6 located at a height ϑ7;
the parameter ϑ8 is the gravitational constant. The controls u1 and u2 correspond to the exter-
nally supplied fluid. A nonzero value d(t) > 0 corresponds to leakage in the first tank; the variable
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Fig. 2. A three-tank system.

y0(t) = ( 0 0 1 )x(t) = x3(t) must be insensitive to it. The amount of leakage is assumed to be
unknown, so it cannot be compensated for by increasing u1 and the proposed method should be
used instead.

For the sake of simplicity, let a1 = a2 = a3 = 1 and ϑ7 = 0. The initial conditions and control
are supposed to be such that x1(t) � x2(t) � x3(t) � 0 for all t � 0.

Clearly, F = 0 for (6.1), and the considered approach cannot be applied directly. To over-
come this difficulty, we transform (6.1) by introducing the formal terms −(x1 − x2) + (x1 − x2),
((x1 − x2)− (x2 − x3))− ((x1 − x2)− (x2 − x3)), and (x2 − x3 − x3)− (x2 − x3 − x3) into the
first, second, and third equations, respectively. The term −(x1 − x2) is added to the linear part;
the term (x1 − x2), to the nonlinear part. The remaining terms are handled similarly. As a result,
the system is described by the following matrices and nonlinearities:

F =

⎛⎜⎝ −1 1 0
1 −2 1
0 1 −2

⎞⎟⎠ , G =

⎛⎜⎝ 1 0
0 1
0 0

⎞⎟⎠ , H =
(
1 0 0

)
, H0 =

(
0 0 1

)
,

D =

⎛⎜⎝ −1
0
0

⎞⎟⎠ , C =

⎛⎜⎝ 1 0 0
−1 1 0
0 −1 1

⎞⎟⎠ , Ψ(x) =

⎛⎜⎝ −√
A1x+A1x

−√
A2x+A2x

−√
A3x+A3x

⎞⎟⎠ ,

A1 = (1 − 1 0), A2 = (0 1 − 1), A3 = (0 0 1).

Since D =
(
1 0 0

)T
, we have D0 =

(
0 1 0
0 0 1

)
, and equation (3.5) takes the form

( X Y Z )

⎛⎜⎜⎜⎜⎜⎝
1 −2 1
0 1 −2
0 1 0
0 0 1
1 0 0

⎞⎟⎟⎟⎟⎟⎠ = 0.

The solution is

( X Y Z ) =

(
1 0 2 −1 −1
0 1 −1 2 0

)
.

As is easily verified, the condition of Step 2 of Algorithm 1 holds for both rows of the matrix Y.
Therefore,

( X0 Y0 Z0 ) = ( X Y Z ),

and consequently,

J∗ =

(
1
0

)
, F∗ =

(
−2 1
1 −2

)
, Φ =

(
0 1 0
0 0 1

)
, G∗ =

(
0 1
0 0

)
.
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Fig. 3. The behavior of the variable x3(t) = y0(t).

In view of H0 =
(
0 0 1

)
, condition (3.3) is obviously valid; the matrix H∗ is found from the

equation H0 = H∗Φ and has the form H∗ = (0 1).

As a result, the linear part of submodel (2.4) is described by the equations

ẋ∗1 = u2 − 2x∗1 + x∗2 + y,

ẋ∗2 = x∗1 − 2x∗2,

where x∗1 = Φ1x = x2 and x∗2 = Φ2x = x3. In addition, y0 = H∗x∗ = x∗2, i.e., Xy = {x∗2}.

All columns in the matrix C∗ = ΦC =

(
−1 1 0
0 −1 1

)
are nonzero, and the matrix A′ hence

contains three rows A1, A2, and A3; condition (3.2) holds for it. Solving equation (3.1) yields

A∗1,1 = (−1 0), A∗2,1 = 1, A∗1,2 = (1 − 1), A∗2,2 = 0, A∗1,3 = (0 1), A∗2,1 = 0.

Therefore, the nonlinear part (2.5) takes the form

C∗Ψ∗(x∗, y, u) =

⎛⎝ √
y − x∗1 − (y − x∗1)−

√
x∗1 − x∗2 + (x∗1 − x∗2),

√
x∗1 − x∗2 − (x∗1 − x∗2)−√

x∗2 + x∗2

⎞⎠ .

Finally, adding it to the linear part gives the nonlinear submodel

ẋ∗1 = u2 +
√
y − x∗1 −

√
x∗1 − x∗2,

ẋ∗2 =
√
x∗1 − x∗2 −√

x∗2.
(6.2)

Since y = x1 is not expressed through the vector z := x∗, Step 1 of Algorithm 2 yields Yg = ∅
and Yb = {y}. Step 2 of this algorithm leads to Xb = ∅; Step 4 yields r = 1 and the single equation
v2 = u2 +

√
y − z1, which is obviously solvable for u2 :

u2 = v2 −
√
y − z1.

Setting v1 = u1 and substituting the above formula for u2 into (6.2), we finally arrive at the com-
pensator description

ż1 = v2 −
√
z1 − z2,

ż2 =
√
z1 − z2 −√

z2,

u1 = v1,

u2 = v2 −
√
y − z1.

(6.3)
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For numerical simulation, we select u1(t) = 5 and u2(t) = 2 sin(5t). Figure 3 shows the behavior
of the variable x3(t) = y0(t) of system (6.1) with the initial state x(0) = 0 for five different cases.
Curve 1 corresponds to the case without the fault and decoupling; curve 2, to the case where the
fault d = 4 occurs at the time instant t = 8, but fault decoupling is not introduced (the variable
changes its dynamics for t > 8). Curves 3 and 4 correspond to the introduction of decoupling with
v2(t) = 2 + sin(5t) at the time instant t = 0 in the system without the fault and with the fault,
respectively; since curves 3 and 4 coincide, the fault is not manifested (has no effect on x3(t)).
Curve 5 corresponds to the system with the fault and decoupling with v2(t) = 2 + sin(5t) introduced
at the time instant t = 8; until this instant the behavior of the variable y0(t) coincides with curve 1.

Clearly, curves 3 and 4, where the decoupling with v2(t) = 2 + sin(5t) is introduced at the
time instant t = 0, do not coincide with curve 1 (the behavior of the variable without the fault).
To achieve this coincidence, it is necessary to solve the control problem for the variable v2(t) in
system (6.1) with the compensator (6.3). This is an independent problem solved by known methods.
A similar picture is observed in case 5: when the fault occurs and the compensator is introduced,
the variable y0(t), t > 8, changes its behavior, and the coincidence with its dynamics without the
fault can be achieved by solving the control problem for the variable v2(t).

7. CONCLUSIONS

This paper has considered technical systems described by nonlinear dynamic models. The fault
tolerance property of such systems has been ensured by introducing feedback with full or partial
fault decoupling. The solution is based on the logical-dynamic approach, which operates only linear
algebra methods. An illustrative practical example has been provided.
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